Dynamic Data Driven Ensemble for Wildfire Behaviour Assessment: A Case Study

نویسندگان

  • Margherita Di Leo
  • Daniele de Rigo
  • Darío Rodríguez-Aseretto
  • Claudio Bosco
  • Thomas Petroliagkis
  • Andrea Camia
  • Jesus San-Miguel-Ayanz
چکیده

Wildfire information has long been collected in Europe, with particular focus on forest fires. The European Forest Fire Information System (EFFIS) of the European Commission complements and harmonises the information collected by member countries and covers the forest fire management cycle. This latter ranges from forest fire preparedness to post-fire impact analysis. However, predicting and simulating fire event dynamics requires the integrated modelling of several sources of uncertainty. Here we present a case study of a novel conceptualization based on a Semantic Array Programming (SemAP) application of the Dynamic Data Driven Application Systems (DDDAS) concept. The case study is based on a new architecture for adaptive and robust modelling of wildfire behaviour. It focuses on the module for simulating wildfire dynamics under fire control scenarios. Rapid assessment of the involved impact due to carbon emission and potential soil erosion is also shown. Uncertainty is assessed by ensembling an array of simulations which consider the uncertainty in meteorology, fuel, software modules. The event under investigation is a major wildfire occurred in 2012, widely reported as one of the worst in the Valencia region, Spain. The inherent data, modelling and software uncertainty are discussed and preliminary results of the robust data-driven ensemble application are presented. The case study suitably illustrates a typical modelling context in many European areas – for which timely collecting accurate local information on vegetation, fuel, humidity, wind fields is not feasible – where robust and flexible approaches may prove as a viable modelling strategy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Data-Driven Model for Large Wildfire Behaviour Prediction in Europe

The European Forest Fire Information System (EFFIS) has been established by the Joint Research Centre (JRC) and the Directorate General for Environment (DG ENV) of the European Commission (EC) in close collaboration with the Member States and neighbour countries. EFFIS is intended as complementary system to national and regional systems in the countries, providing harmonised information require...

متن کامل

Towards a Dynamic Data Driven Application System for Wildfire Simulation

We report on an ongoing effort to build a Dynamic Data Driven Application System (DDDAS) for short-range forecast of wildfire behavior from real-time weather data, images, and sensor streams. The system should change the forecast when new data is received. The basic approach is to encapsulate the model code and use an ensemble Kalman filter in time-space. Several variants of the ensemble Kalman...

متن کامل

Demonstrating the Validity of a Wildfire DDDAS

We report on an ongoing effort to build a Dynamic Data Driven Application System (DDDAS) for short-range forecast of weather and wildfire behavior from real-time weather data, images, and sensor streams. The system changes the forecast as new data is received. We encapsulate the model code and apply an ensemble Kalman filter in timespace with a highly parallel implementation. In this paper, we ...

متن کامل

A Note on Dynamic Data Driven Wildfire Modeling

A proposed system for real-time modeling of wildfires is described. The system involves numerical weather and fire prediction, automated data acquisition from Internet sources, and input from aerial photographs and sensors. The system will be controlled by a nonGaussian ensemble filter capable of assimilating out-of-order data. The computational model will run on remote supercomputers, with vis...

متن کامل

Dynamic Data Driven Application System for Wildfire Spread Simulation

Wildfires have significant impact on both ecosystems and human society. To effectively manage wildfires, simulation models are used to study and predict wildfire spread. The accuracy of wildfire spread simulations depends on many factors, including GIS data, fuel data, weather data, and high-fidelity wildfire behavior models. Unfortunately, due to the dynamic and complex nature of wildfire, it ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013